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The fractional translational diffusion of a particle in a double-well potential �excluding inertial effects� is
considered. The position correlation function and its spectrum are evaluated using a fractional probability
density diffusion equation �based on the diffusion limit of a fractal time random walk�. Exact and approximate
solutions for the dynamic susceptibility describing the position response to a small external field are obtained.
The exact solution is given by matrix continued fractions while the approximate solution relies on the expo-
nential separation of the time scales of the fast “intrawell” and low overbarrier relaxation processes associated
with the bistable potential. It is shown that knowledge of the characteristic relaxation times for normal
diffusion allows one to predict accurately the anomalous relaxation behavior of the system for all relevant time
scales.
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I. INTRODUCTION

Relaxation and diffusion processes in complex disordered
systems such as amorphous polymers, glass forming liquids,
etc., exhibit temporal nonlocal behavior arising from ener-
getic disorder causing obstacles or traps both slowing down
the motion of the particle and introducing memory effects.
The memory effects can be described by a fractional diffu-
sion equation incorporating a waiting time probability den-
sity function �1,2� governing the random time intervals be-
tween single microscopic jumps of the particles. The
fractional diffusion equation stems from the integral equation
for a continuous time random walk �CTRW� �3,4�. The situ-
ation is thus unlike that in a conventional random walk
which is characterized by a microscopic time scale small
compared to the observation time. The microscopic time in
the conventional random walk is the time the random walker
takes to make a single microscopic jump. In this context one
should recall that the Einstein theory of the normal Brownian
motion relies on the diffusion limit of a discrete time random
walk. Here the random walker makes a jump of a fixed mean
square length in a fixed time thus the only random variable is
the direction of the walker, leading automatically via the cen-
tral limit theorem �in the limit of a large sequence of jumps�
to the Wiener process describing the Brownian motion. The
CTRW, on the other hand, was introduced by Montroll and
Weiss �4� as a way of rendering time continuous in a random
walk without necessarily appealing to the diffusion limit. In
the most general case of the CTRW, the random walker may
jump an arbitrary length in arbitrary time. However, the jump
length and jump time random variables are not statistically
independent �1,5,6�. In other words a given jump length is
penalized by a time cost, and vice versa. A simple case of the
CTRW arises when one assumes that the jump length and

jump time random variables are decoupled. Thus the jump
length variances are always finite; however, the jump times
may be arbitrarily long so that they obey a Lévy distribution
with its characteristic long tail �5,6�. Thus the jump length
distribution ultimately becomes Gaussian with finite jump
length variance, while the mean waiting time between jumps
diverges due to the underlying Lévy waiting time distribu-
tion. Such walks, which possess a discrete hierarchy of time
scales, not all of which have the same probability of occur-
rence, are known as fractal time random walks �5�. In the
limit of a large sequence of jump times, they yield a frac-
tional Fokker-Planck equation in configuration space �5,7�.

Now the relevant fractional diffusion �Fokker-Planck�
equation for the distribution function W�x , t� of the one-
dimensional noninertial translational motion of a particle in a
potential V�x , t� may be written as �1,2�

�W�x,t�
�t

= 0Dt
1−�K�

�

�x
� �

�x
W�x,t� +

W�x,t�
kT

�

�x
V�x,t�� .

�1�

Here x specifies the position of the particle at time t,
−��x��, kT is the thermal energy, and K�=�� /kT is a
generalized diffusion coefficient, and �� is a generalized vis-
cous drag coefficient arising from the heat bath. The operator

0Dt
1−�� �

�t 0Dt
−� in Eq. �1� is given by the convolution �the

Riemann-Liouville fractional integral definition� �1�

0Dt
−�W�x,t� =

1

�����0

t W�x,t��dt�

�t − t��1−� , �2�

where ��z� is the � function �8�. The physical meaning of the
parameter � is the order of the fractional derivative in the
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ractional differential equation describing the continuum limit
of a random walk with a chaotic set of waiting times �often
known as a fractal time random walk�. Values of � in the
range 0���1 correspond to subdiffusion phenomena
��=1 corresponds to normal diffusion�. However, a more
physically useful definition of � is as the fractal dimension
of the set of waiting times. The fractal dimension is the scal-
ing of the waiting time segments in the random walk with
magnification of the walk. Thus, � measures the statistical
self-similarity �or how the whole resembles its individual
constituent parts �5�� of the waiting time segments. In order
to construct such an entity in practice a whole discrete hier-
archy of time scales such as will arise from energetic disor-
der is needed. For example a fractal time Poisson process �5�
with a waiting time distribution assumes the typical form of
a Lévy stable distribution in the limit of large �. This is
explicitly discussed in Ref. �5� where a formula for � is
given and is also discussed in Ref. �9�. The fractal time pro-
cess is essentially generated by the energetic disorder treated
as far as the ensuing temporal behavior is concerned by con-
sidering jumps over the wells of a chaotic potential barrier
landscape.

The fractional diffusion equation �1� can in principle be
solved by the same methods as the normal Fokker-Planck
equation. However, to the best of our knowledge no explicit
solutions for the fractional translational diffusion in a poten-
tial have ever been presented. The only exception appears to
be a solution for the harmonic potential given by Metzler et
al. �10� in terms of an eigenfunction expansion with Mittag-
Leffler temporal behavior. This approach has recently been
extended to the analogous fractional rotational diffusion
models in a periodic potential by Coffey et al. �11–13�.
There, the authors have developed effective methods of so-
lution of fractional diffusion equations based on ordinary and
matrix continued fractions �as is well known the continued
fractions are an extremely powerful tool in the solution of
normal diffusion equations �7,14��. Here we further general-
ize the methods of Coffey et al. �11–13� for fractional trans-
lational diffusion problems. As a particular example, we shall
present both exact and approximate solutions for the anoma-
lous diffusion of a particle in a double-well potential, viz.

V�x� =
1

2
ax2 +

1

4
bx4, �3�

where a and b are constants. The model of normal diffusion
in the 2–4 potential Eq. �3� is almost invariably used to de-
scribe the noise driven motion in bistable physical and
chemical systems. Examples are such diverse subjects as
simple isometrization processes �15–19�, chemical reaction
rate theory �20–28�, bistable nonlinear oscillators �29–31�,
second order phase transitions �32�, nuclear fission and fu-
sion �33,34�, stochastic resonance �35,36�, etc.

The normal diffusion in the 2–4 potential in the very high
damping limit, where the inertia of the particle may be ne-
glected, has been extensively studied either by using the
Kramers escape rate theory or by solution of the appropriate
Fokker-Planck �Smoluchowski� equation �see, e.g., Refs.
�7,22,25,36–38�, and references cited therein�. In the VHD
limit, the conventional analysis of the problem proceeds

from the Smoluchowski equation by either rendering that
equation as a Sturm-Liouville problem �e.g., Refs. �25,39��
or by the solution of an infinite hierarchy of linear
differential-recurrence relations for statistical moments �e.g.,
Refs. �40,41��. The same methods may be used if the inertial
effects are included �see e.g., Refs. �42,43��. The fractional
diffusion equation �1� can in principle be treated in a like
manner. The subdiffusion in the double-well potential Eq. �3�
has been considered in Refs. �44,45� in terms of an eigen-
function expansion with Mittag-Leffler temporal behavior. In
Refs. �44,45�, the authors mainly studied the effect of bound-
ary conditions on the transition probability density. In con-
trast, the purpose of the present paper is to ascertain how the
anomalous diffusion in a bistable potential, b	0 and a�0,
modifies the behavior of the position correlation function
C��t�= 	x�0�x�t�
0 / 	x2�0�
0 and its spectra �which character-
ize the anomalous relaxation�. We shall give exact and ap-
proximate solutions for these quantities. Furthermore, we
shall demonstrate that the characteristic times of the normal
diffusion process, namely, the inverse of the smallest nonva-
nishing eigenvalue of the Fokker-Planck operator, the inte-
gral and effective relaxation times, obtained in Ref. �7�, also
allow us to describe the anomalous relaxation behavior.

II. BASIC EQUATIONS

By using dimensionless variables and parameters as
defined in �7,38�, viz.

V�y� =
V�x�
kT

= Ay2 + By4, y =
x

	x2
0
1/2 , A =

a	x2
0

2kT
,

B =
b	x2
0

2

4kT
,

the fractional Fokker-Planck equation becomes

�W�y,t�
�t

= �−�
0Dt

1−� �

�y
� �

�y
W�y,t� + W�y,t�

�

�y
V�y,t�� ,

�4�

where �= 	x2
0 /K1 has the meaning of the characteristic in-
tertrapping time �waiting time between jumps�, K1 is the dif-
fusion coefficient for normal diffusion, and the angular
brackets 	�·�
0=Z−1�−�

� �·�e−V�y�dy mean equilibrium en-
semble averages. Here Z is the partition function given by for
A�0 �which is the case of greatest interest� �7�

Z = �
−�

�

e−V�y�dy = �
�2B�−1/4eQ/2D−1/2�− �2Q� , �5�

where Dv�z� are Whitaker’s parabolic cylinder functions of
order v �8� and Q=A2 /4B is the barrier height for the poten-
tial V�y�=Ay2+By4 �see Fig. 1�. The normalization condition
	y2
0=1 implies that the constants A and B are now not in-
dependent �7�

B = B�Q� =
1

8

D−3/2
2 �sgn�A��2Q�

D−1/2
2 �sgn�A��2Q�

. �6�

For A�0 and large barriers �Q�1�, B
Q while for small Q
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B =
�2�3/4�
�2�1/4�

+
��3/4���2�1/4� + ��− 1/4���3/4��

�3�1/4�
�Q + ¯

� 0.1142 + 0.1835�Q + ¯

One may seek a formal solution of Eq. �4� for t�0 as
�42,43�

W�y,t� =



�

e−�
2y2+V�y��/2�

q=1

�
cq�t�Hq�
y�

�2qq!
, �7�

where 
 is a scaling factor chosen so as to ensure optimum
convergence of the continued fractions involved as suggested
by Voigtlaender and Risken �42� �all results for the observ-
ables are independent of 
�. By substituting Eq. �7� into Eq.
�1� and noting that �8�

dHn�z�/dz = 2nHn−1�z� and Hn+1�z� = 2zHn�z� − 2nHn−1�z� ,

�8�

we have a seven-term fractional differential recurrence rela-
tion for cq�t�, viz.

d

dt
cq�t� = �−�

0Dt
1−��gq

+cq+6�t� + fq
+cq+4�t� + eq

+cq+2�t� + dqcq�t�

+ eq
−cq−2�t� + fq

−cq−4�t� + gq
−cq−6�t�� , �9�

where

dn = −
�B

2�6 �4�Q�6 + ��4 + 4Q − 6��2n + 1��4− 12�Q�2�2n2

+ 2n + 1� + 5�2n + 1��2n2 + 2n + 3�� ,

en
+ = en+2

− =
�B

2�6 ���n + 1��n + 2����4 − 4Q + 6��4

+ 8�Q�2�2n + 3� − 15�n2 + 3n + 3��� ,

fn
+ = fn+2

− = −
�B

2�6
��n + 1��n + 2��n + 3��n + 4�

��− 4�Q�2 + 3�2n + 5�� ,

gn
+ = gn+2

− = −
�B

2�6
��n + 1��n + 2��n + 3��n + 4��n + 5��n + 6� ,

and �=
 /B1/4.
Equation �9� can be solved exactly using matrix continued

fractions as in the Appendix. Having determined c2q−1�t�, one
can calculate the position correlation function

C��t� =
�ZB1/4

�

�
q=1

�

c2q−1�0�c2q−1�t� , �10�

its spectrum C̃����=�0
�C��t�e−i�tdt, and the dynamic suscep-

tibility ����=�����− i����� defined as �7�

���� = − �
0

�

e−i�t d

dt
C��t�dt = 1 − i�C̃���� �11�

�see Appendix�. We remark that the dynamic susceptibility
���� characterizes the ac response of the system to a small
perturbation. A knowledge of ���� allows one, in particular,
to evaluate the signal-to-noise ratio �SNR� of the stochastic
resonance at small signal amplitudes, see, e.g., Ref. �36�.

In order to understand the anomalous relaxation behavior

of C̃����, we first recall that the position correlation function
C��t� can be formally presented as �10,11�

C��t� = �
p

cpE��− ��p�t/���� , �12�

where E��z� is the Mittag-Leffler function defined as �1�

E��z� = �
n=0

�
zn

��1 + n��
,

�p ��1��2��3� ¯ � are the eigenvalues of the Fokker-
Planck operator for normal diffusion, and �pcp=1. Equation
�12� exemplifies how the eigenvalues of the normal distribu-
tion process are altered, in this case reduced, by the nonlocal
character of the anomalous diffusion process and how
the Mittag-Leffler behavior replaces the exponential
relaxation patterns of normal Brownian motion in a potential
�for normal diffusion, Eq. �12� takes the familiar form
C1�t�=�pcp exp�−�pt��. The eigenvalues of the local process
�p are related to their Brownian counterparts by the prefactor
�1−�. This scaling effect is significant in the context of escape
of particles over potential barriers. There, the smallest non-
vanishing eigenvalue �1 of the Fokker-Planck equation, writ-
ten for the Brownian motion in a potential, yields in the high
barrier limit, the Kramers escape rate �
�1
e−�V/�kT� ��V
is the barrier height� �46�. Therefore, in the context of
anomalous diffusion, the Kramers escape rate � can be best
understood as playing the role of a decay parameter in the
Mittag-Leffler functions governing the highly nonexponen-
tial relaxation behavior of the system.

Noting that the Laplace transform of the Mittag-Leffler
function is �1�

FIG. 1. Potential V�y�=Ay2+By4 for various values of
A / �2B1/2�=−�2 �curve 1�, −1 �2�, −1/�2 �3�, 0 �4�, and 1 �5�.
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�
0

�

e−stE��− �p��t/����dt =
1

s + �p��s�1−� ,

Eqs. �11� and �12� and yield

���� = �
p

cp

1 + �i����/���p�
. �13�

In the low- �→0� and high- ��→�� frequency limits, the
behavior of the susceptibility may now be readily evaluated.
We have from Eq. �11� for �→0 and for �→�, respectively

���� � 1 −
�int

�
�i���� + ¯ , �14�

���� 

�

�i�����ef
+ ¯ , �15�

where the parameters �int and �ef are given by

�int = �
p

cp/�p and �ef = 1/�
p

cp�p. �16�

For normal diffusion, these parameters correspond to the cor-
relation �or integral relaxation� time �int=�0

�C1�t�dt �the area
under the correlation function C1�t�=�pcpe−�pt� and the ef-

fective relaxation time �ef =−1/ Ċ1�0� �which gives precise
information on the initial decay of C1�t��. We remark that
no such characteristic times exist in anomalous diffusion
���1�. This is obvious from the long time inverse power
law behavior of the Mittag-Leffler function. In anomalous
diffusion, the times �1

−1, �int, and �ef are always parameters of
the normal diffusion. They exist because in normal diffusion
an underlying microscopic time scale exists, namely the du-
ration of an elementary jump, characteristic of the discrete
time random walk as used by Einstein.

III. TWO MODE APPROXIMATION FOR C�„t…

As we shall see, two bands appear in the spectrum
of �����. The low-frequency band is due to the slowest
�overbarrier� relaxation mode; the characteristic frequency
�c and the half width of this band are determined by the
smallest nonvanishing eigenvalue �1. Thus, the anomalous
low frequency behavior is dominated by the barrier crossing
mode as in the normal diffusion. The high-frequency band is
due to “intrawell” modes corresponding to the eigenvalues
�k �k�1�. These near degenerate intrawell modes are indis-
tinguishable in the frequency spectrum of ����� appearing
merely as a single high-frequency band. As shown by
Kalmykov et al. �11�, the susceptibility ���� can be effec-
tively described via a two mode approximation, viz.

���� =
�1

1 + �i�/�c�� +
1 − �1

1 + �i�/�W�� , �17�

where the characteristic frequencies �c and �W are given by

�c = �−1���1�1/�, �W = �−1��/�W�1/�. �18�

The parameters �1 and �W are defined in terms of the char-
acteristic times of the normal diffusion �the integral relax-

ation time �int, the effective relaxation time �ef, and the in-
verse of the smallest nonvanishing eigenvalue 1/�1� �7,11�

�1 =
�int/�ef − 1

�1�int − 2 + 1/��1�ef�
, �W =

�1�int − 1

�1 − 1/�ef
. �19�

In the time domain, such a bimodal approximation is equiva-
lent to assuming that the correlation function C��t� yielded
by the exact Eq. �12� �which in general comprises an infinite
number of Mittag-Leffler functions� may be approximated by
two Mittag-Leffler functions only, viz.

C��t� � �1E��− �t/�����1� + �1 − �1�E��− �t/����/�W� .

�20�

The characteristic times 1/�1, �int, and �ef for the normal
Brownian motion in a double-well potential Eq. �3� have
been obtained in Refs. �38,41� �see also �7�, Chapter 6�. Here
we simply use known equations for �1, �int, and �ef for nor-
mal diffusion in order to predict the anomalous relaxation
behavior. The �int and �ef for normal diffusion may be ex-
pressed in exact closed form, viz. ��7�, Chapter 6�

�ef = � , �21�

�int = �
�
eQ/2D−1/2�− �2Q�

23/4D−3/2
2 �− �2Q�

�
0

�

e�s − �Q�2
�1 − erf�s − �Q��2 ds

�s
,

�22�

where erf�z�= 2
�


�0
ze−z2

dz is the error function �8�. The small-
est nonvanishing eigenvalue �1 can be estimated in terms of
matrix continued fractions from Eq. �34� of the Appendix.
Moreover, for all values of Q, �1 can be evaluated with very
high accuracy from the approximate equation �7�

�1 =
D−3/2�− �2Q�

�D−1/2�− �2Q�� eQ

1 + erf��Q�
�

0

� �
0

�

e−�s − �Q�2−�t − �Q�2

�
erf��2st�

�st
dsdt�−1

. �23�

In the low temperature limit, Q�1, �1
−1 and �int have the

simple asymptotic behavior �7,25�

1/�1 

�
eQ

4�2Q
�1 +

5

8Q
+ ¯ �, �24�

�int 

�
eQ

4�2Q
�1 +

1

2Q
+ ¯ � .

Equations �17�–�24� allow one readily to estimate the quali-
tative behavior of the susceptibility ���� and its characteris-
tic frequencies �c and �W. In particular, Eqs. �18�–�21� and
�24� yield simple asymptotic equations for the amplitude �1
and characteristic frequencies �c and �W in the low tempera-
ture limit �Q�1�, viz.

�1 
 1 − 1/�8Q�, �c 
 �4�2Q/
�1/�e−Q/�/�,

and �W 
 �8Q�1/�/� . �25�

Equations �17�, �18�, �20�, and �25� allows one to readily
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evaluate ���� and C��t� at high barriers, Q�1.

IV. RESULTS AND DISCUSSION

Calculations of the susceptibility ���� from the exact ma-
trix continued fraction solution, Eqs. �27� and �28�, and the
approximate Eqs. �17� and �18� and are shown in Figs. 2 and
3. Here, the low- and high-frequency asymptotes, Eqs. �14�
and �15�, are also shown for comparison. The two bands
arising in the spectrum of ����� reach a maximum at char-
acteristic frequencies �c and �W given by Eq. �18�. Appar-
ently, the agreement between the exact continued fraction
calculations and the approximate Eq. �17� is very good �the
maximum relative deviation between the corresponding
curves appearing at �
�−1, does not exceed a few percent�.
Similar �or even better� agreement exists for all values of Q
and �. Such a high degree of accuracy of the bimodal ap-
proximation arises because the infinite number of high-
frequency intrawell modes �these individual near degenerate
modes are indistinguishable appearing merely as a single
high-frequency band in the spectrum� may be approximated
effectively by a single mode. Thus, one may conclude that
Eq. �17� accurately describes the behavior of ���� for all
frequencies of interest and for all values of the barrier height
�Q� and anomalous exponent ��� parameters. We remark that
the bimodal approximation works extremely well both for
anomalous ���1� and normal ��=1� cases �various appli-
cations for the normal diffusion in a potential are given in
Ref. �7��.

Thus the anomalous relaxation in a double-well potential
is like the normal relaxation again effectively determined by
the bimodal approximation, Eqs. �17� and �20�; the charac-
teristic times of the normal diffusion process, namely, the
inverse of the smallest nonvanishing eigenvalue, the integral
and effective relaxation times appearing as time parameters.
The bimodal approximation constitutes an example of the
solution of the noninertial fractional translational diffusion
equation in a double-well potential. The simple asymptotic
Eqs. �18�–�24� allows one to easily evaluate the characteris-
tic frequencies of the spectrum in terms of the physical
model parameters Q and �. The results obtained may be
regarded as a generalization of the solution for the normal
Brownian motion in a double well potential to fractional dy-
namics �giving rise to anomalous diffusion�. Furthermore,
one may conjecture that this generalized model can explain
the anomalous relaxation of complex systems where the
anomalous exponent � differs from unity, i.e., the relaxation
process is characterized by a broad distribution of relaxation
times.

We must remark however that the fractional diffusion
theory can be used only at low frequencies ����1� just as
its normal diffusion counterpart as inertial effects are com-
pletely ignored in that theory. For normal diffusion, these
effects can be included via the inertial Fokker-Planck �Klein-
Kramers� equation �7,14�. One may also include inertial ef-
fects in fractional relaxation processes. This is accomplished
by utilizing a fractional version of the Klein-Kramers equa-
tion for diffusion in phase space �47,48�.

FIG. 2. The real �� and imaginary �� parts of the dynamic susceptibility vs. �� for the barrier height Q=6 and various values of the
fractional exponent �=1 �normal diffusion�, 0.8, and 0.6. Solid lines are the matrix continued fraction solution. Filled circles: the bimodal
approximation, Eq. �17�. Dashed and dotted lines: the low and high frequency asymptotes, Eqs. �14� and �15�.

FIG. 3. �� and �� vs. �� for �=0.8 and various values of Q=3, 6, and 8. Key as in Fig. 2.
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Finally in view of previous work �49,50� in the theory of
anomalous translational diffusion we briefly allude to addi-
tional mechanisms yielding anomalous diffusion in a poten-
tial. Examples are time rescaled Brownian motion or gener-
alized Langevin equations with nonwhite Gaussian noise
�49,50� so that the memory function is no longer a � func-
tion. Moreover the concept of a generalized Langevin equa-
tion with friction term given by the Riemann-Liouville defi-
nition of the fractional derivative has been used by Lutz �51�
to analyze translational anomalous diffusion.
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APPENDIX: MATRIX CONTINUED FRACTION
SOLUTION

Equation �9� can be rearranged as the set of matrix three-
term recurrence equations

�
d

dt
Cn�t� = �1−�

0Dt
1−��Qn

−Cn−1�t� + QnCn�t�

+ Qn
+Cn+1�t��, �n � 1� , �26�

where the column vectors Cn�t� and the matrices Qn, Qn
+, Qn

−

are

Cn�t� = �c6n−5�t�
c6n−3�t�
c6n−1�t�

� ,

Qn = �d6n−5
+ e6n−5

+ f6n−5
+

e6n−5
+ d6n−3

+ e6n−3
+

f6n−5
+ e6n−3

+ d6n−1
+ � ,

Qn
+ = �g6n−5

+ 0 0

f6n−3
+ g6n−3

+ 0

e6n−1
+ f6n−1

+ g6n−1
+ � ,

Qn
− = �Qn−1

+ �T

�the sign “T” designates transposition�. Now by one-sided
Fourier transformation, Eq. �26� can be rearranged as the set
of matrix three-term recurrence equations

�i����C̃n��� − ��i����−1Cn�0� = QnC̃n��� + Qn
+C̃n+1���

+ Qn
−C̃n−1��� , �27�

where C̃n���=�0
�Cn�t�e−i�tdt. By invoking the general

method �7,14� for solving the tridiagonal matrix recurrence

Eq. �26� and noting that C̃0���=0, we have the exact solu-

tion for C̃1��� in terms of matrix continued fractions, viz.

C̃1��� = ��i����−1�1�i���C1�0�

+ �
n=2

� ��
k=2

n

Qk−1
+ �k�i���Cn�0�� , �28�

where �n��� are the matrix continued fractions defined by
the recurrence equation

�n��� = ��i����I − Qn − Qn
+�n+1���Qn+1

− �−1. �29�

All other C̃n��� can be calculated from the recurrence Eq.
�27�. The spectrum of the equilibrium correlation position
function C��t� is then given by

C̃���� =
�ZB1/4

�

�
n=1

�

Cn
T�0�C̃n���

=
�ZB1/4

�

�
q=1

�

c2q−1�0�c̃2q−1��� , �30�

where the sign T �transpose� designates transformation of a
column vector Cn�0� to a row vector. Equation �30� follows
from the definition of the correlation function C��t� �42�, viz.

C��t� = 	y�0�y�t�
0 = �
−�

� �
−�

�

yy0W�y,t�y0,0�W0�y0�dydy0,

�31�

where y0=y�0�, W0�y0�=e−Ay0
2−By0

4
/Z is equilibrium �Boltz-

mann� distribution function, and W�y , t �y0 ,0� is the transi-
tion probability, which satisfies Eq. �1� with the initial con-
dition W�y ,0 �y0 ,0�=��y−y0� and is defined as

W�y,t�y0,0� =



�

e−
2�y2+y0

2�/2−�V�y�−V�y0��/2

��
q,p=1

�
�G�t��q,pHq�
y�Hp�
y0�

�2q+pq!p!
.

Here

�G�t��q,p =



�
2q+pq!p!
�

−�

� �
−�

�

Hq�
y�Hp�
y0�

�e−
2�y2+y0
2�/2+�V�y�−V�y0��/2W�y,t�y0,0�dydy0

are the matrix elements of the system matrix G�t�. The co-
efficients cq�t� are given in terms of elements of the system
matrix G as

cq�t� = �
p=1

�

�G�t��q,pcp�0� �32�

with the initial conditions

cp�0� =
1

Z�2pp!B
�

−�

�

xHp��x�e−��2x2−2�Qx2+x4�/2dx . �33�
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Noting Eq. �30�, the correlation time �int= C̃1�0� and the

effective relaxation time �ef =−1/ Ċ1�0� for normal diffusion,
�=1, can be calculated in terms of matrix continued frac-
tions as

�int =
�ZB1/4

�

�
n=1

�

Cn
T�0�C̃n�0� ,

�ef = − ��ZB1/4

�

�
n=1

�

Cn
T�0�Ċn�0��−1

;

the smallest nonvanishing eigenvalue �1 can be evaluated
from the secular equation �7,14�

det��1�I + Q1 + Q1
+�2�− �1�Q2

−� = 0. �34�
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